
International Journal of Computer Trends and Technology Volume 72 Issue 10, 36-42, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P107 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimization of Class Scheduling Problem: A Multi-

Constraint Approach for Effective Resource Allocation

and Space Utilization

Paulami Bandyopadhyay

Sr. Data Engineer, Milliman Inc, Chicago, IL, USA.

Corresponding Author : paulami88@gmail.com

Received: 22 August 2024 Revised: 26 September 2024 Accepted: 11 October 2024 Published: 23 October 2024

Abstract - With the rapid growth of student enrollment and the expansion of academic offerings in universities and colleges

worldwide, the task of scheduling classes within existing timetables and facilities has become increasingly complex. Today, class

scheduling requires consideration of multiple factors, including room availability, capacity, instructors’ preferences, and more.

This problem is considered to be NP-complete and has received some research during the past few years. Several formulations

and algorithms have been proposed to solve scheduling problems, most of which are based on local search techniques. In this

paper, 2 different types of algorithms have been compared to solve the class scheduling problem: the random restart Hill-

Climbing algorithm and the A-Star algorithm.

Keywords - A Star, Class Scheduling, Hill-Climbing, NP-complete, Searching Algorithms.

1. Introduction
One of the biggest obstacles in the field of educational

and operational research is the class scheduling problem.

Universities have to deal with an ever-expanding course

catalogue, which makes it necessary to assign a wide variety

of classes to classrooms that effectively have different

capacities. The goal of this optimization problem is to create

a course schedule that maximizes the effective and efficient

use of currently available facilities while also adhering to a

comprehensive set of university constraints. A number of

interrelated factors contribute to the Class Scheduling

Problem's complexity, making it a complex challenge. First,

there is significant variety in the number of students enrolled

in each course. Comparably, there is a great deal of variance

in classroom capacities. The existence of course-specific

classroom constraints further compounds these factors.

Furthermore, professors frequently share their preferences for

the day of the week, time slot, and even break schedule for the

courses they are assigned to teach. These elements, along with

the requirement to adhere to numerous regulations specific to

the university, make the process of assigning courses to

classrooms an extremely complex undertaking. It is not

enough to just make sure a classroom can hold all of the

students enrolled in the course. A method like this would

result in less-than-ideal space use, which could impair

learning and increase student discontent. Imagine the

following scenario: there are two courses, each with six and

nineteen students. Moreover, suppose there are two

classrooms: one with twenty seats and another with fifty.

Although it is technically possible to arrange either course in

either space, it would be more strategic to place the larger

course in the larger classroom. This example best illustrates

the complexity of the class scheduling problem. In order to

guarantee efficient operation and the best use of resources

within universities, researchers are still investigating

advanced approaches to deal with this complex issue.

2. Problem Statement
Receiving a set of courses, each with a specific number of

students, a set of rooms with a specific capacity, and a list of

instructors with their list of preferences, the goal is to assign

each course to a room and a time slot, according to a list of

constraints. There are 2 types of constraints that need to be

satisfied:

2.1. Hard Constraints

 Below is the list of constraints that must be satisfied for

the solution to be valid. If any of these constraints are not

satisfied, the solution is invalid.
• Within a designated timeslot and in a given room, only

one subject may be taught by a single instructor.

• During any given time slot, an instructor may teach only

one subject, and this instruction must occur within a

singular room.

• An instructor may conduct classes in a maximum of 7

time slots per week.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

37

• Within a specified time slot, a room may accommodate a

number of students equal to or less than its predetermined

maximum capacity.

• All students enrolled in a particular subject must have

designated class hours allocated for that subject.

• Instructors are restricted to teaching only the subjects in

which they are specialized.

• All rooms are designated for classes pertaining only to the

subjects for which they have been assigned.

2.2. Soft Constraints

 Below is the list of constraints that are not mandatory,

but they are taken into account when evaluating the quality of

the solution.

• An instructor may express preferences regarding specific

days of the week for teaching or may wish to avoid

teaching on certain days.

• An instructor may have preferences regarding specific

time slots during the day for teaching or may wish to

avoid teaching during certain time slots.

• An instructor may prefer not to have a break exceeding a

certain number of hours between consecutive classes.

3. Methods of Approach
3.1. Random Restart Hill Climbing

This is a local search algorithm commonly applied in

optimization problems. It begins with an initial solution and

iteratively explores neighboring solutions, selecting the one

that improves the objective function the most. This process

continues until a local optimum is reached, where no better

solution can be found in the immediate neighborhood.

When the algorithm reaches a local optimum, it restarts

the search from a random initial solution. The algorithm

terminates when a specified number of iterations have been

completed or when a solution that satisfies all constraints is

found.

3.2. A Star

This is an informed search algorithm widely used for

pathfinding and graph traversal tasks. It intelligently combines

both actual path costs and heuristic estimates to guide the

search towards the goal efficiently. A* maintains a priority

queue of nodes to be explored and selects the most promising

node based on a combination of the cost incurred so far and

the estimated cost to reach the goal. This allows A* to

efficiently find the optimal path while intelligently pruning the

search space, making it highly effective for solving a wide

range of optimization problems.

4. Algorithm Design
4.1. State Representation

The state representation for the Class Scheduling Problem

consists of a schedule that assigns each course to a room and

a time slot. The state is represented as a class that contains the

following fields:

• file_name: The name of the file from which the data was

read.

• yaml_dict: A dictionary containing the data read from the

file.

• size: A tuplet (days, time_slots) representing the size of

the schedule.

• schedule: A dictionary that has the following structure:

{(day: str) : {(time_slot: (int, int)) : {(classroom : str) :

((instructor : str), (subject : str))}}}.

• students_per_subject: A dictionary that contains the

number of students for each subject that needs to be

scheduled.

• count_teacher_slots: A dictionary that contains the

number of scheduled slots for each instructor.

• trade_off: A number that represents the trade-off between

the number of constraints satisfied and the chosen

classroom at each step (used in A Star).

4.1.1. Initial State

The initial state is generated as an empty schedule, which

is initialized with the parameters derived from the input file,

including the number of days, time slots, and classrooms.

Additionally, the number of students per subject is obtained

from the input file, while the count of scheduled slots for each

instructor is set to zero. This initial state serves as the starting

point for the search algorithms, enabling them to iteratively

allocate courses to rooms and time slots until a valid schedule

is achieved. An alternative method for generating the initial

state involves randomly assigning course instructors to rooms

and time slots in a manner that adheres to the hard constraints.

A comparative analysis of these two approaches will be

conducted in the Initial State Selection section.

4.1.2. Generating Neighbors

The neighbors of a state are generated by considering all

possible combinations of assigning a course to a room, a time

slot and an instructor while ensuring adherence to the hard

constraints. In the initial phase, all potential neighbors that

adhere to both the hard and soft constraints are generated.

Subsequently, in the event that no neighbors satisfying all soft

constraints are found, a secondary phase ensues where only

neighbors satisfying the hard constraints are generated. This

strategy reduces the total number of neighbors generated,

allowing the algorithm to prioritize those that satisfy all

constraints. Consequently, the algorithm minimizes time

wastage by avoiding the generation of neighbors that would

not be utilized, resulting in a reduced number of states

generated.

4.1.3. Initial State Selection

As previously mentioned, the initial state can be

generated in two methodologies: either as an empty schedule

or through the random assignment of courses, instructors, and

rooms to time slots. The former method exhibits a greater

degree of determinism, initializing the schedule with vacant

slots, whereas the latter introduces stochasticity into the initial

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

38

state generation process. Upon experimentation with both

approaches, it became evident that the random initialization

method could often yield solutions that fail to adhere to all

specified soft constraints. This underscores the importance of

carefully considering all potential subsequent states that may

arise from the current state when designing the random

initialization method. For instance, in instances where an

instructor´s preferences are violated within a particular time

slot, the algorithm should endeavor to substitute the instructor

with another whose preferences remain unviolated for that

time slot. Moreover, the algorithm should endeavor to

substitute the time slot with another or substitute the room

with another that has the same capacity in total.

This approach was found more difficult to implement.

When trying to implement the first two substitutes, the

algorithm was not able to find a solution that satisfies all the

soft constraints, and it took quite a lot of time to find a partial

solution due to a large number of constraints that should be

checked while creating the neighbors. On the other hand, this

approach will always find a partial solution that satisfies all

the hard constraints. Thus, this one is recommended in cases

when the soft constraints are not that important. The method

that was used in the end was the empty schedule initialization.

It is acknowledged that without the random initialization

component, the Hill-Climbing algorithm may struggle to

assign all students to a room, thereby violating a hard

constraint. However, with the inclusion of the random restart,

the algorithm will always find a solution that satisfies all the

hard constraints, the soft ones being satisfied in most of the

cases. This approach is recommended in cases when the soft

constraints are more important than in the previous case, and

it is easier to generate the neighbors.

4.2. Random Restart Hill Climbing

As previously mentioned, the Random Restart Hill

Climbing algorithm is the most suitable for this approach. The

algorithm is initialized with an empty schedule and generates

neighbors that adhere to the hard constraints. The algorithm

iteratively explores the neighborhood of the current state,

randomly selecting one of the neighbors that satisfies the most

constraints. This process continues until a local optimum is

reached, at which point the algorithm restarts the search. The

algorithm terminates when a solution that satisfies all

constraints is found or when a specified number of

iterations/restarts have been completed. A pseudocode of the

algorithm is presented in Algorithm 1.

Algorithm 1: Random Restart Hill Climbing Algorithm

1: procedure HILL_CLIMBING(max_restarts)

 return [is_final, total_iters, total_states, best_state]

2: total_iters = 0

3: total_states = 0

4: best_state = None

5: for index in range(max_restarts) do

6: state = InitialState()

7: is_final, iters, states, state =

STOCHASTIC_HILL_CLIMBING(state, total_iters)

8: total_iters+ = iters

9: total_states+ = states

10: if is_final then

11: return [is_final, total_iters, total_states, state]

12: if state does not have hard constraints then

13: if best_state == None or state has less soft constraints

unsatisfied than best_state then

14: best_state = state

15: return [is_final, total_iters, total_states, best_state]

Algorithm 1: Stochastic Hill Climbing Algorithm

1: procedure STOCHASTIC_HILL_CLIMBING(state,

max_iters) return [is_final, total_iters, total_states,

best_state]

2: total iters = 0

3: total states = 0

4: while total_iters < max_iters do

5: total iters+ = 1

6: if state is final then return [True, total_iters,

total_states, state]

7: neighbors = state.generate_neighbors()

8: total_states+ = len(neighbors)

9: if neighbors == None then return [False, total_iters,

total_states, state]

10: state = random.choice(from neighbors one of the

neighbors with minimum number of constraints unsatisfied)

11: return [False, total_iters, total_states, state]

4.3. A Star

For the A Star algorithm, the state representation is the

same as for the Random Restart Hill Climbing algorithm. The

algorithm is initialized with an empty schedule and generates

neighbors that adhere to the hard constraints. The algorithm

iteratively explores the neighborhood of the current state. The

frontier represents a heap that contains the states that need to

be explored. The discovered is a dictionary that contains as

keys the number of students that need to be scheduled for each

subject and as values the cost of the state that brought about

this configuration. The function used in the A Star algorithm

is:

f(state) = g(state) + h(state) (1)

 where

h(state) = total number of students that are not assigned

 (2)

g(state) = number of constraints unsatisfied ∗ weight + trade

off (3)

trade off = number of classrooms(subject) (4)

 total number of classrooms

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

39

The heuristic function is admissible because the return

value is always less than or equal to the actual cost of the state

to reach a final one and is equal to 0 in the final states. On the

other hand, the function h is not consistent, because a state

from discovered can be added to the frontier with a smaller

cost. The cost function is calculated as the number of

constraints unsatisfied multiplied by a weight and the trade-

off. In cases where the number of constraints unsatisfied is

equal, multiplying it by a weight will prioritize the states that

have the trade-off smaller. Moreover, when the number of

constraints unsatisfied is different, the prioritization will be

made based on the number of constraints unsatisfied, not on

the trade-off. The trade-off is calculated as the number of

classrooms that are assigned to a subject divided by the total

number of classrooms. Adding a subject to a classroom that

has fewer subjects assigned to it has been prioritized. For

instance, if there was 2 subjects: A and B, 2 classrooms: 1 and

2, and classroom 1 is assigned to subject A and classroom 2 is

assigned to both subjects while trying to assign a subject to

classroom 2, subject B (trade off = 0.5) is chosen instead of

subject A (trade off = 1). The pseudocode of the algorithm is

presented in Algorithm 2.

Algorithm 2: A Star Algorithm

1: procedure ASTAR return [is_final, total_iters, total_

states, best_state]

2: frontier = []

3: discovered = {}

4: state = InitialState()

5: frontier.append((f(state), state))

6: discovered[state] = 0

7: total_iters = 0

8: total_states = 1

9: while frontier do

10: current state = frontier.pop(1)

11: total_iters+ = 1

12: if current_state == 0 then return

[True, total_iters, total_states, current_state]

13: neighbors = current_state.generate_neighbors()

14: total_states+ = len(neighbors)

15: for neighbor in neighbors do

16: new cost = g(neighbor) + h(neighbor)

17: students_per_subject =

neighbor.students_per_subject

18: if students_per_subject not in discovered or new_cost

< discovered[students_per_subject] then

19: discovered[neighbor] = new_cost

20: frontier.append((new_cost, neighbor))

21: return [False, total_iters, total_states,

current_state]

4.4. Complexities

The complexity of the Random Restart Hill Climbing

algorithm is O(n), where n is the total number of iterations.

The complexity of the A Star algorithm is O(bd), where b is

the branching factor and d is the depth of the solution. The

complexity of the generate neighbors function is O(d ∗ t ∗ c ∗

i ∗ s), where d is the number of days, t is the number of time

slots, c is the number of classrooms, i is the number of

instructors, and s is the number of subjects. Because the

number of days does not exceed 7 (the worst case) and the

number of time slots does not exceed 12, the complexity

becomes O(c ∗ i ∗ s).

5. Evaluation
Both algorithms are evaluated based on the quality of the

solutions they provide, the time required to find these

solutions and the total number of states explored during the

search. The quality of the solutions is evaluated based on the

number of constraints satisfied. The time required to find the

solutions is measured in milliseconds, and the total number of

states explored is counted during the search process.

5.1. Tests Description

Small timetable exactly: Contains 3 courses, 2 rooms, and

13 instructors. The number of students for each course are 300,

330, and 330. The capacity of the rooms is 20 and 30. The

instructors have few preferences. Relaxed average schedule:

Contains 4 courses, 4 rooms, and 18 instructors. The number

of students for each course is 660, 660, 665 and 685. The

capacity of the rooms is 25, 25, 35 and 70. The instructors

have few preferences. Relaxed high schedule: Contains 8

courses, 6 rooms, and 37 instructors. The number of students

for each course is 470, 475, 475, 495, 500, 530, 535 and 550.

The capacity of the rooms is 25, 30, 30, 35, 85 and 85. The

instructors have few preferences. Time limit violated:

Contains 4 courses, 2 rooms, and 17 instructors. The number

of students for each course is 720, 750, 780 and 810. The

capacity of the rooms is 15 and 90. The instructors have a lot

of preferences. Orar bonus exact: Contains 5 courses, 5 rooms,

and 23 instructors. The number of students for each course is

500, 510, 515, 520 and 545. The capacity of the rooms is 15,

15, 15, 15 and 50. The instructors have a lot of preferences,

including break constraints.

5.2. Results

For the Hill-Climbing algorithm, the number of restarts

was established at 100, while the maximum number of

iterations for all tests was capped at 1000. In the case of the

A* algorithm, a weight of 100 was applied. Each test involved

the execution of both algorithms. The ensuing tables depict the

outcomes across various categories: the count of unsatisfied

soft constraints, the time taken to attain a solution, the total

number of states explored during the search, and the iterations

needed to reach a solution. Additionally, for the Hill Climbing

algorithm, the number of restarts executed until a solution was

obtained is delineated. The outcomes for the Hill Climbing

algorithm are categorized based on the number of restarts.

Moreover, the individual results for each test are presented in

the following Tables 1 and 2.

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

40

3000

4000

5000

6000

N
u

m
b

er
 o

f
it

er
at

io
n

s

A*

 Fig. 1 Number of iterations required to find the solution

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 1 2 3 4

N
u

m
b

er
 o

f
st

at
es

Test number

A* Hill Climbing

 Fig. 2 Total number of states explored during the search

25

30

35

40

45

50

T
im

e
(m

in
)

A* Hill Climbing

Fig. 3 Time required to find the solution

3

4

5

6

N
u

m
b

er
 o

f
co

n
st

ra
in

ts

A* Hill Climbing

Fig. 4 Number of soft constraints unsatisfied

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

41

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

N
u

m
b

er
 o

f
re

st
ar

ts

Test number

Hill Climbing

Fig. 5 Number of restarts until a solution was found for Hill

Climbing

5.3. Observations

The Hill Climbing algorithm exhibits faster performance

compared to the A* algorithm primarily due to its local search

nature.

The Hill Climbing algorithm is more efficient in terms of

the number of iterations required to reach a solution.

The A* algorithm, while slower, is more effective in

terms of the number of unsatisfied constraints. The A*

algorithm consistently yields solutions that satisfy all

constraints, whereas the Hill Climbing algorithm occasionally

encounters unsatisfied constraints.

Recognizing the prolonged duration required to attain a

solution for orar_bonus_exact using the Hill-Climbing

algorithm, the number of restarts was reduced to 20.

The A Star algorithm is more suitable for scenarios

similar to orar_mic_exact, orar_mediu_relaxat, and

orar_constrans_incalcat, where the number of neighbors

generated is smaller. In contrast, the Hill Climbing algorithm

is more appropriate for scenarios similar to orar_mare_relaxat

and orar_bonus_exact, where the number of neighbors

generated is larger.

Table 1. Results obtained for the Hill Climbing algorithm

No. set No. iterations No. states Time mm.ss.ms
No. unsatisfied

constraints
No. restarts

1 106 9989 0.4.317 0 3

2 71 53875 0.34.053 0 1

3 76 72621 0.77.753 0 1

4 5889 1228027 10.40.491 6 100

5 2221 1603927 22.47.289 5 20

Table 2. Results obtained for the A Star algorithm

No. set No. iterations No. states Time mm.ss.ms No. unsatisfied constraints

1 146 17073 0.8.537 0

2 158 183159 2.12.937 0

3 2883 2171276 52.49.856 0

4 91 12368 0.8.172 0

5 2542 1385784 27.15.878 0

6. Conclusion
In summary, based on the context of the implementation

of the Class Scheduling Problem, the Hill Climbing algorithm

outperforms the A* algorithm in terms of efficiency. A*

achieves slower solution discovery but with no unsatisfied

constraints. Conversely, Hill Climbing is faster but may

occasionally encounter unsatisfied constraints. The Hill

Climbing algorithm is more suitable for scenarios where the

soft constraints are less significant and the time required to

find a solution is a critical factor. In contrast, the A* algorithm

is more appropriate for scenarios where the soft constraints are

more significant and the quality of the solution is paramount.

References
[1] Kian L. Pokorny, and Ryan E. Vincent, “Multiple Constraint Satisfaction Problems Using the A-Star (A*) Search Algorithm: Classroom

Scheduling with Preferences,” Journal of Computing Sciences in Colleges, vol. 28, no. 5, pp. 152-159, 2013. [Google Scholar] [Publisher

Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiple+constraint+satisfaction+problems+using+the+A-star+%28A*%29+search+algorithm%3A+classroom+scheduling+with+preferences&btnG=
https://dl.acm.org/doi/10.5555/2458569.2458602
https://dl.acm.org/doi/10.5555/2458569.2458602

Paulami Bandyopadhyay / IJCTT, 72(10), 36-42, 2024

42

[2] Der-Fang Shiau, “A Hybrid Particle Swarm Optimization for a University Course Scheduling Problem with Flexible Preferences,” Expert

Systems with Applications, vol. 38, no. 1, pp. 235-248, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[3] Russell, Artificial Intelligence: A Modern Approach, 2nd ed., Pearson Education, 2003. [Google Scholar] [Publisher Link]

[4] Abdoul Rjoub, “Courses Timetabling Based on Hill Climbing Algorithm,” International Journal of Electrical and Computer Engineering,

vol. 10, no. 6, pp. 6558-6573, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.eswa.2010.06.051
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+particle+swarm+optimization+for+a+university+course+scheduling+problem+with+flexible+preferences&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417410005555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+Intelligence%3A+A+Modern+Approach+%282nd+ed.%29%2C+Upper+Saddle+River%2C+New+Jersey%3A+Prentice+Hall&btnG=
https://www.google.co.in/books/edition/_/4fyShrIFXg4C?hl=en&sa=X&ved=2ahUKEwitqe3N1JSJAxXoSGcHHa4DDUwQre8FegQIChAD
http://doi.org/10.11591/ijece.v10i6.pp6558-6573
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Courses+timetabling+based+on+hill+climbing+algorithm&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/20986

